The Philosophy of Logical Consequence; 31.10.-2.11. 2008, Uppsala

Nationalkommittén för logik, metodologi och filosofi (KVA)
i samarbete med Kollegiet för Samhällsforskning (SCAS) och institutionerna
för filosofi och matematik vid Uppsala Universitet arrangerar:

 The Philosophy of Logical Consequence
 31/10 - 2/11 2008

Thunbergssalen, Kollegiet för Samhällsforskning (SCAS)
Thunbergsvägen 2, 752 36 Uppsala

Inbjudna talare:
John Cantwell (KTH, Stockholm), Matti Eklund (Cornell), Sten Lindström
(Umeå), Per Martin-Löf (Stockholm), Sara Negri (Helsinki), Peter Pagin
(Stockholm), Erik Palmgren (Uppsala), Dag Prawitz (Stockholm), Stephen Read (St Andrews), Tor Sandqvist (KTH, Stockholm), Gabriel Sandu (Helsinki/Paris), Peter Schroeder-Heister (Tübingen), Sören Stenlund (Uppsala), Göran Sundholm (Leiden), Dag Westerståhl (Gothenburg).

There is a traditional picture of logic that may be spelled out as follows:
Logic is concerned with the principles for correct reasoning and valid
arguments; its principles are universal, necessary, apriori and formal;
logically valid arguments are necessarily truth-preserving and have a
fundamental epistemic significance; and finally, logic is in some sense a
normative discipline. This traditional picture gives rise to many questions. The
notions of universality, logical necessity, apriority, and formality are
difficult to analyze. In what sense, if any, is logic normative? Is there a
principled way of distinguishing between logical and non-logical concepts? While continuing to face these foundational questions, logic has developed into an advanced mathematical discipline; mathematical logic; where the informal notions of logical proof, validity and logical consequence are given mathematical explications.

In mathematical logic, there are two major approaches to these notions:
model-theoretic and proof-theoretic ones. Both are faced with philosophical
problems: To what extent do they correspond to our pre-theoretic requirements on logical consequence? Which requirements should we expect an explication of
logical consequence to meet? Is there only one satisfactory explication of the
notion of logical consequence or are there several equally good ones? Do the two
approaches compete or rather complement each other? These and related questions will be discussed during the workshop.

Sten Lindström (Umeå), Rysiek Sliwinski (Uppsala), Dag Westerståhl
Kontaktperson, information, frågor: Prof. Sten Lindström, 070-2130178,
Sten.Lindstrom (at)

 Arrangemanget är öppet för allmänheten.